CHARACTERIZATION BY ASYMPTOTIC MEAN FORMULAS OF q−HARMONIC FUNCTIONS IN CARNOT GROUPS
نویسندگان
چکیده
Aim of this paper is to extend the work [9] to the Carnot group setting. More precisely, we prove that in every Carnot group a function is q−harmonic (here 1 < q < ∞), if and only if it satisfies a particular asymptotic mean value formula.
منابع مشابه
Growth of A-Harmonic Functions and Carnot Groups
The order of growth of a harmonic function is determined by the growth of its gradient and conversely. We extend these results to solutions of certain subelliptic equations in John domains in Carnot groups. The modulus of the gradient is replaced by a local average of the horizontal gradient. In the harmonic case these quantities are equivalent. The proof uses recent integral inequalities assoc...
متن کاملLipschitz classes of A-harmonic functions in Carnot groups
The Hölder continuity of a harmonic function is characterized by the growth of its gradient. We generalize these results to solutions of certain subelliptic equations in domains in Carnot groups.
متن کاملON THE REGULARITY OF SUBELLIPTIC p-HARMONIC FUNCTIONS IN CARNOT GROUPS
In this paper we prove second order horizontal differentiability and C1,α regularity results for subelliptic p-harmonic functions in Carnot groups for p close to 2.
متن کاملA certain convolution approach for subclasses of univalent harmonic functions
In the present paper we study convolution properties for subclasses of univalent harmonic functions in the open unit disc and obtain some basic properties such as coefficient characterization and extreme points.
متن کاملQuantum groups and zeta-functions
A q-analogue of the Hurwitz zeta-function is introduced through considerations on the spectral zeta-function of quantum group SUq(2), and its analytic aspects are studied via the Euler-MacLaurin summation formula. Asymptotic formulas of some relevant q-functions are discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014